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Abstract

We consider a real function which depends on the distances between a variable point and the points
of a �nite subset A of a linear normed space X . We show that X is an inner product space if this
function a�ains its local minimum on a barycenter of points ofAwith well-chosen weights. Our result
generalizes classical results about characterization of inner product spaces and answers a question of
R. Durier, which was posed in his article [J. Math. Anal. Appl. 207 (1997) 220–239]. 2004 Elsevier Inc.
All rights reserved.

LetX be a normed linear space and let S(X) be a set of points of norm one. Before we formulate our
theorem let us introduce the following:

De�nition. Let X be a real linear space and f be a functional on X. We say that x0 ∈ X is a point of a
weak local minimum of the functional f , if for any y ∈ X , there exists > 0 such that f(x0 + ty) ≥ f(x0)
for all t, |t| < ε.

�eorem. Let X be a real normed space, dimX ≥ 2 and n be a natural number; n ≥ 3. Let also
φi : R+ → R+, 1 ≤ i ≤ n and γ : Rn+ → R+ are some given functions. Consider the statements:

0



(i) X is an inner product space.

(ii) For every subset {a1, a2, ..., an} included in S(X) and such that
∑n−1

i=1 ai 6= 0 and
∑n−1

i=1 ai +
‖
∑n−1

i=1 ai‖an = 0, 0 is the point of a week local minimum of the functional

F (x) =
n−1∑
i=1

ϕi
(
‖x− ai‖

)
+

∥∥∥∥∥
n−1∑
i=1

ai

∥∥∥∥∥ϕn(‖x− an‖).
(iii) For every subset {a1, a2, ..., an} included in S(X), for every positive n and every family of real

numbers (ω1, ω2, ..., ωn) such that
∑n

i=n ωiai = 0, 0 is the point of a weak local minimum of the
functional

F (x) =
n∑
i=1

ωiϕi
(
‖x− ai‖

)
.

(iv) For every subset {a1, a2, ..., an} included in X\{0} such that
∑n−1

i=1 ai = 0, 0 is the point of weak
local minimum of the functional

F (x) =

n∑
i=1

‖ai‖2ϕ

(
‖x− an‖
‖ai‖

)

(v) for every subset {a1, a2, ..an} from S(X), containing at least one non-collinear vectors and such
that

∑n−1
i=1 ai 6= 0,

∑n−1
i=1 ai‖

∑n−1
i=1 ai‖an = 0, 0 is the point of a weak local minimum of the

functional

F (x) = γ

(
ϕ1

(
‖x− a1‖

)
, ..., ϕn−1

(
‖x− an−1‖

)
,

∥∥∥∥∥
n−1∑
i=1

ai

∥∥∥∥∥ϕ(‖xn − an‖)
)

(vi) for every subset {a1, a2, ..an} from S(X), containing at least one pair of non-collinear vectors and
an ∈ X\{0}, such that

∑n
i=1 ai = 0, 0 is the point of weak local minimum of functional

F (x) = γ

(
ϕ1

(
‖x− a1‖

)
, ..., ϕn−1

(
‖x− an−1‖

)
, ‖an‖2ϕn

(
‖xn − an‖
‖an‖

))

�e following implications are valid:

(i) If φi,1 ≤ i ≤ n, is the function de�ned on the neighborhood U of the point 1 in R such that ϕ′i
(
u
)

is continuous, ϕ′1
(
1
)
= ... = ϕ′n

(
u
)
6= 0 and ϕ′′i

(
1
)
> 0, then

(
i
)
−
(
iv
)
are equivalent.

(ii) If γ is the function de�ned on the neighborhood of a line T =
(
ϕ1

(
1
)
, ..., ϕn−1

(
1
)
, tnφn

(
1
))
, such

that it has continuous partial derivatives and γ′t1
(
t
)
= ... = γ′tn

(
t
)
for all t ∈ T and ϕi is a function

de�ned on a neighborhood of a point 1, ϕ′i
(
u
)
, 1 ≤ i ≤ n, is continuous andϕ′1

(
1
)
= ... = ϕ′n

(
u
)
6=

0, then we have
(
v
)
→
(
i
)
,
(
vi
)
→
(
i
)
.
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In [1, �eorem 5.3] the equivalence of statements
(
i
)
–
(
iv
)
was proved for the case when ϕi

(
t
)
= tα,

α ≥ 1. One of the question from [1], was to �nd monotone n-norms
(
i.e., norm on Rn such that if

0 ≤ ui ≤ vi
(
1 ≤ i ≤ n

)
than foru =

(
u1, ..., un

)
, v =

(
v1, ..., vn

)
we have γ

(
u
)
≤ γ

(
v
))

di�erent
from lα norms for which results similar to those given in the above mentioned �eorem 5.3 are true.

Proof. We are going to show that
(
v
)
→
(
i
)
,
(
vi
)
→
(
i
)
,
(
i
)
→
(
iv
)
,
(
i
)
→
(
iii
)
.A�er this the equivalence

of
(
i
)
–
(
iv
)
in the theorem will follow since it is clear that

(
iii
)
and

(
iv
)
imply

(
ii
)
and

(
ii
)
implies

(
v
)
for

the function γ(u) =
∑

i u
(
i
)
.

(v) → (i) According to the well-known Von Neumann–Jordan criterion it is enough to prove this
implication for the case dimX = 2. �us we should prove that the surface S(X) of the unit ball B(X) in(
R2, ‖ · ‖

)
is an ellipse. �e proof is based on the following elementary result from [2] and we give it here

for completeness.

Lemma 1. �ere exists an ellipse which is inside the unit ball B(X) and touches S(X) at four points at
least.

Proof. It is easy to show that an ellipse of maximum area inside B(X) touches S(X) at four points at
least (this argument seems to be used frequently, see, e.g., [3, p. 322]).

Lemma 2. Let ϕ and ψ be two functions de�ned on the interval I =
(
a − ε, a + ε

)
, ε > 0, such that

ψ
(
x
)
≥ ϕ

(
x
)
, ∈ I , ψ

(
a
)
= ϕ

(
a
)
and the derivatives ϕ′

(
a
)
, ψ′−

(
a
)
, ψ′+

(
a
)
exist. If ψ′−

(
a
)
≥ ψ′+

(
a
)
,

then ψ′−
(
a
)
= ψ′+

(
a
)
= ϕ′

(
a
)
.

Proof.

ϕ′
(
a
)
= lim

u→0,u>0

ϕ′
(
a
)
− ϕ′

(
a− u

)
u

≥ lim
u→0,u>0

ψ′
(
a
)
− ψ′

(
a− u

)
u

= ψ−′
(
a
)
≥ ψ+′

(
a
)
= lim

u→0,u>0

ψ′
(
a+ u

)
− ψ′

(
a
)

u
≥ lim

u→0,u>0

ϕ′
(
a+ u

)
− ϕ′

(
a
)

u

which proves the lemma.
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Let E be the ellipse from Lemma 1 and A′ and B′ be the points of the intersection S(X)∩E, A′ 6= B′,
and A′ 6= −B′. Apply an a�ne transformation L that carries E into the unit circle of

(
R2, ‖ · ‖2

) (
‖ · ‖2

being the usual l2 norm
)
. LetXOY be an orthogonal Cartesian system onR2 such thatL

(
A′
)
=
(
−1, 0

)
.

Denote
(
− 1, 0

)
by A and L

(
B′
)
by B =

(
b1, b2

)
. Obviously, b21 + b22 = 1 and b2 6= 0.

Let a1 = ... = an−2 = A, an−1 = B, a′n = −
((
n− 2

)
a1 + an−1

)
, an = a′n

‖a′n‖
, and letMε be the point

Mε =
(
aε, ε

)
, a = x

y , where an =
(
x, y
)
. From b2 6= 0 follows that y 6= 0. Consider the vectors

a1 −Mε =
(
− 1− aε, ε

)
, an−1 −Mε =

(
b1 − aε, b2 − ε

)
an −Mε =

(
x− aε, y − ε

)
Since x = ay we get

an −Mε =
(
ay − aε, y − ε

)
=
y − ε
y

(
x, y
)

and hence ‖an −Mε‖ = 1− ε
y . We are going to estimate the norms of the two other vectors. By Lemma

2 there exists the tangents to L(S(X)) at the points A and B and they are expressed by the equations
x = −1, y = −b

(
x − b1

)
+ b2, respectively, where b = b1

b2
. We may assume that L(S(X)) coincides to

those tangents at the neighborhood of the points A and B, so we have the following expressions:

‖a1 −Mε‖ = 1 + aε+ o
(
ε
)

and
‖an−1 −Mε‖ = 1−

(
b2 + ab1

)
ε+ o

(
ε
)

By the property of the functional F , there exists ε > 0 such that for all ε, |ε| < ε. For such ε we have

F (x) = γ

(
ϕ1

(
‖Mε − a1‖, ..., ϕn−1

(
‖Mε − an−1‖, ‖a′n‖ϕn

(
‖Mε − an‖

))

= γ

(
ϕ1

(
1 + aε+ o

(
ε
))
, ...., ϕn−2

(
1 + aε+ o

(
ε
))
,

ϕn−1
(
1−

(
b2 + ab1

)
+ o
(
ε
))
, ‖a′n‖ϕn

(
1− ε

y

))
.

Using Taylor decomposition for ϕi, i = 1, ..., n, and γ, we obtain

F (Mε) = γ

(
ϕ1

(
1
)
+ ϕ′1

(
1
)
aε+ o

(
ε
)
, ..., ϕn−1

(
1
)
− ϕ′n−1

(
1
)(
b2 + ab1

)
ε+ o

(
ε
)
,

‖a′n‖
(
ϕn
(
1
)
− ϕ′n

(
1
)ε
y
+ o
(
ε
))
.

Introduce the notation t =
(
ϕ1

(
1
)
, ..., ϕn−1

(
1
)
, ‖a′n‖ϕn

(
1
))
. Since γ′t1

(
t
)
= ... = γ′tn

(
t
)
and ϕ′1

(
1
)
=

... = ϕ′n
(
1
)
we can rewrite the last equation as follows:

F (Mε) = γ
(
t
)
+ γ′t1

(
t
)
ϕ′1
(
1
)((

n− 2
)
−
(
b2 − ab1

)
− ‖a

′
n‖
y

)
ε+ o

(
ε
)
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≥ γ
(
t
)
= F

(
0
)
.

From this inequality we get

γ′t1
(
t
)
ϕ′n
(
1
)((

n− 2
)
a−

(
b2 + ab1

)
− ‖a

′
n‖
y

)
= 0

and since γ′t1
(
t
)
ϕ′n
(
1
)
6= 0 we obtain

y =
‖a′n‖(

n− 2
)
a− b2 − ab1

. (1)

using relation x2 = a2y2,
−
(
n−2−b1

)
b2

= a and ‖a′n‖ = −b2
y , we get

x2 + y2 =
(
1 + a2

)
y2 =

(
1 + a2)b2

b2 + ab1 −
(
n− 2

)
a
=

1 + a2

1 + a2
= 1

Denote by arc
(
A,B

)
the part of the circle L(E) which is inside smaller angle generated by the vectors

A and B. As we have just proved, if L(S(X)) and L(E) coincide at two points A and B they coincide at
one more point C ∈ arc

(
A,B

)
. Continuing this process, we see that L(S(X)) and arc

(
A, B

)
coincide

on a dense set of points. Hence arc
(
A,B

)
⊂ L(S(X)) as well. �e proof of implication is complete.(

vi
)
→
(
i
)
Let A and B be the vectors we have just considered above and let a1 = ... = an−2 = A,

an−1 = B, an = −
(
(n− 2)a1 + an−1

)
,

Mε =
(
aε, ε

)
, a =

x′

y′
.

where an =
(
x′, y′

)
. Since x′ = ay′ we get

an −Mε =
(
ay′ − aε, y′ − ε

)
=
y′ − ε
y′

(
x′, y′

)
and hence ‖an−Mε‖

‖an‖ = 1− ε
y′ . It is clear that the same expressions are true for ‖a1−Mε‖ and ‖an−1−Mε‖,

so as in the previous case we can derive the equality(
n− 2

)
a−

(
b2 − ab1

)
− ‖an‖

2

y′
= 0.

Denote now by (x, y) the vector an
‖an‖ , i.e., we have

y′

y = ‖an‖. �is gives us the equality (1) and hence
the relation x2 + y2 = 1. Using the same arguments as for the previous case we obtain that L(S(X)) is a
circle. �e proof

(
vi
)
→
(
i
)
is complete.(

i
)
→
(
vi
)
let x ∈ X , ‖x‖ = ε. It is clear that

‖x− ai‖
‖ai‖

=

√
1− 2(x, ai)

‖ai‖2
+

ε2

‖ai‖2
.

Denoting (2(x,ai)−ε2)
‖ai‖2 by δi and using the formula√

1− δi = 1− 1

2
δi −

1

8
δ2i + o

(
δ2i
)
.
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we get
n∑
i=n

‖ai‖2ϕi

(
‖x− ai‖
‖ai‖

)
=

n∑
i=n

‖ai‖2ϕi

(
1− 1

2
δi −

1

8
δ2i + o

(
δ2i
))
.

Let
δ′i = −

1

2
δi −

1

8
δ2i + o

(
δ2i
)
.

Since ϕ′′i
(
t
)
is continuous in the neighborhood of the point 1 we have

n∑
i=n

‖ai‖2
(
ϕi
(
1
)
+ ϕ′i

(
1
)
δ′i +

1

2
ϕ′′i
(
1
)
δ′i

2
+ o
(
δ′i

2
))
.

�e �rst term of this expression is F (0). Consider the second one:

n∑
i=n

‖ai‖2ϕ′iδ′i

= ϕ′i

n∑
i=n

‖ai‖2
((
− 2(x, ai)− ε2

)
2‖ai‖2

− 1

8

(
2(x, ai)− ε2ε2

‖ai‖2
+ o
(
ε2
))

ϕ′i

(
−

(
x,

n∑
i=1

ai

)
+
n

2
ε2 − 1

2

n∑
i=1

(x, ai)
2

‖a‖2
+ o
(
ε2
))
.

For the third term we have

1

2

n∑
i=n

‖ai‖2ϕ′′i
(
1
)
δ′i

2
=

1

2

n∑
i=n

ϕ′′i
(
1
)(x, ai)2
‖ai‖2

+ o
(
ε2
)
.

Since
∑n

i=n ai = 0, it is easy to obtain that

F (x) = F (0) +
n

2
ε2ϕ′i

(
1
)
+

1

2

n∑
i=1

(x, ai)
2

‖ai‖2
(
ϕ′′i
(
1
)
− ϕ′1

(
1
))

+ o
(
ε2
)

≥ F (0) + 1

2
cε2 + o

(
ε2
)
,

where c = min1≤i≤n
(
ϕ′′i
(
1
)
, ϕ′1
(
1
))
> 0. �e proof of this implication is complete.(

iii
)
→
(
iii
)
For ‖x‖ = ε we have ‖x − ai‖ =

√
1− 2(x, ai) + ε2. Denoting 2(x, ai) − ε2 by δi we

get
n∑
i=1

ωiϕi
(
‖x− ai‖

)
=

n∑
i=1

ωiϕi

(
1− 1

2
δi −

1

8
δ2i + o

(
δ2i
))
.

As in the previous case we can derive that

F (x) = F (0) +
1

2

n∑
i=1

ωi

(
ε2ϕ′i

(
1
)
+ (x, ai)

2
(
ϕ′′i
(
1
)
− ϕ′i

(
1
)))

+ o
(
ε2
)
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≥ F (0) + 1

2
cε2 + o

(
ε2
)
.

�e proof of the theorem is complete.
Now it is easy to �nd monotone norms di�erent from lα norms for which the coincidence of optimal

location and barycenters of a �nite set implies thatX is an inner product space. For example, let us consider
the following norm γ on Rn:

γ(u1, ..., un) =
√

(n− 1)(u21 + ...+ u2n) + |un|

and let ϕt(t) = t 1 ≤ i ≤ n. We now have

Proposition. �e following statements are equivalent:

(i) X is an inner-product space.

(ii) For every subset {a1, a2, ..., an} from S(X) containing at least on pair of non-collinear points and
such that

∑n−1
i=1 ai 6= 0,

∑n−1
i=1 ai + ‖

∑n−1
i=1 ai‖an = 0, 0 is the point of a weak local minimum of

the functional

F (x) =
√

(n− 1)
(
‖x− a1‖2 + ...+ ‖x− an−1‖2

)
+

∥∥∥∥∥
n−1∑
i=1

ai

∥∥∥∥∥ ‖x− an‖
(iii) for every subset {a1, a2, ..an} from S(X), containing at least one pair of non-collinear vectors and

an ∈ X\{0}, such that
∑n

i=1 ai = 0, 0 is the point of weak local minimum of functional and∑n−1
i=1 ai + ‖

∑n−1
i=1 ai‖an = 0, 0 is the point of a week local minimum of the functional

F (x) =
√

(n− 1)
(
‖x− a1‖2 + ...+ ‖x− an−1‖2

)
+ ‖an‖‖x− an‖.

Proof. It is obvious that gamma and for all u = (1, ..., 1, un), un > 0, γ′u1(u) = ... = γ′u1(u) = 1 i.e.,
conditions of

(
v
)
and

(
vi
)
from the previous theorem hold and we obtain

(
iii
)
→
(
i
)
,
(
ii
)
→
(
i
)
. Now we

will prove that
(
i
)
→
(
ii
)
. Let x ∈ X , ‖x‖ = ε. It is clear that F (0) = n− 1 + ‖

∑n−1
i=1 ai‖ and

F (x) = (n− 1)

√√√√1−

(
2

n− 1

(
x,

n−1∑
i=1

ai

)
− ε2

)
+ ‖

n−1∑
i=1

ai‖
√
1−

(
2(x, an)− ε2

)
Using formula

1− δ = 1− 1

2
δ − 1

8
δ2 + o(ε2),

we get,

F (X) = (n− 1)

(
1− 1

2

(
2

n− 1

(
x,

n−1∑
i=1

ai

)
− ε2

)
− 1

8

(
2

n− 1

(
x,

n−1∑
i=1

ai

)
− ε2

)2)

+

∥∥∥∥∥
n−1∑
i=1

ai

∥∥∥∥∥
(
1− 1

2

(
2(x, an)− ε2

)
− 1

8

(
2(x, an)− ε2

)2)
+ o(ε2).
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Using condition
∑n−1

i=1 ai + ‖
∑n−1

i=1 ai‖an = 0, we obtain

F (x) = F (0) +
1

2
(n− 1)ε2 − 1

2(n− 1)

(
x,

n−1∑
i=1

ai

)2

+

(
1

2
ε2 − 1

2
(x, an)

2

)∥∥∥∥∥
n−1∑
i=1

ai

∥∥∥∥∥+ o(ε2)

Since the set {a1, ...an−1} contains at least one pair of non-colinnear points there exists c < 1 such that
‖
∑n−1

i=1 ai‖ = c(n− 1). �is gives us the following inequality:(
x,

n−1∑
i=1

ai

)2

< ε2(n− 1)2c2

and we get

F (x) ≥ F (0) + 1

2
ε2(n− 1)(1− c2) + o(ε2)

we can rewrite this as follows:

F (x)− F (0)
ε2

≥ 1

2
(n− 1)(1− c2) + o(ε2)

ε2

i.e., we obtain that 0 is the point of a local minimum and hence the weak local minimum of the functional
F (x). �e proof of this implication is complete. Implication

(
i
)
→
(
iii
)
can be proved similarly. �e proof

of the proposition is complete.
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